Birzeit University
Faculty of Engineering and Technology
Department of Electrical and Computer Engineering
Communication Systems ENEE 339
Midterm Exam

Instructors: Dr. Wael Hashlamoun, Dr. Mohammad Jubran Date: April 23, 2017

Problem 1: 25 Points

The Fourier transform $G(f)$ of a signal $g(t)$ is given as:

$$
G(f)=\left\{\begin{array}{cc}
2 A & -W \leq f \leq W \\
A & W \leq|f| \leq 2 W \\
0 & |f|>2 W
\end{array}\right\}
$$

a. Find the absolute bandwidth of $g(t)$
b. Find the energy in $g(t)$.
c. If $g(t)$ is passed through an ideal low pass filter with bandwidth $3 \mathrm{~W} / 2$, find the energy in the signal at the filter output.
d. Use the table of Fourier transform pairs at the end of the exam to find $g(t)$.

Problem 2: 25 Points

The message sign $m(t)=2 \cos (2 \pi 40 t)+4 \cos (2 \pi 80 t)$ alalong with the carrier signalc $(t)=$ $4 \cos (2 \pi 1000 t)$ are applied to a modulator that generates the double sideband suppressed carrier signals(t)
a. Find the average power of $m(t)$.
b. Find the time-domain expression of the modulated signal $\mathrm{s}(\mathrm{t})$.
c. Find the bandwidth of the transmitted signal in Hz.
d. Draw the block diagram of the demodulator used to recover $m(t)$ from $s(t)$ without distortion specifying the details of each block

Problem 3: 25 Points

The message $m(t)=0.3 \cos (2 \pi 500 t)$ is applied to a normal amplitude modulatorwith a sensitivity $\mathrm{k}_{\mathrm{a}}=0.2 / \mathrm{V}$ and a carrierc $(t)=10 \cos (2 \pi 10000 t)$ to produce the $\operatorname{signals}(t)=$ $A_{c} \cos \left(2 \pi f_{c} t\right)\left(1+k_{a} m(t)\right)$
a. Find the modulation index.
b. Find the average power in the carrier and in each of the sidebands.
c. Find the power efficiency

Problem 4: 25 Points
Consider the FM signal $s(t)=10 \cos [2 \pi(10000) t+1.2 \sin 2 \pi(200) t]$
a. Find the instantaneous frequency of $s(t)$
b. Find the peak frequency deviation of $s(t)$.
c. Find the 90% power bandwidth of $s(t)$.

Good Luck

$$
\text { ENE } 339
$$

Solution to Midterm
April 23,2017
problem 1

$$
\overline{a \cdot B \cdot w}=2 w
$$

$$
\text { b. } E_{g}=2 \int_{0}^{w}(2 A)^{2} d f+2 \int_{w}^{2 w}(A)^{2} d f
$$

$$
\begin{aligned}
E_{g} & =10 A^{2} w \\
c \cdot E^{\prime} & =2 \int_{0}(2 A)^{2} d f+t^{2} \int_{w}(A)^{2} d f \\
E^{\prime} & =9 A^{2} w \\
d \cdot g(f) & =A \operatorname{rect}\left(\frac{f}{4 w}\right)+A \operatorname{rect}\left(\frac{f}{2 w}\right)
\end{aligned}
$$

(1)

From Table $\operatorname{rect}\left(\frac{t}{T}\right) \rightarrow T \operatorname{sinc} f T$

$$
\operatorname{rect}\left(\frac{t}{T}\right) \rightarrow \frac{1}{2 w} \operatorname{sect}\left(\frac{f}{2 w}\right)
$$

$\Rightarrow 2 w \sin c z w t \rightarrow \operatorname{rect}\left(\frac{f}{2 w}\right)(z)$
sing (2), (1) becomes in the time domain

$$
g(t)=A(4 w) \sin t 4 w t+A(2 w) \sin c 2 w t
$$

Problem 2

$$
\begin{aligned}
& m(t)=2 \cos 2 \pi(40) t+4 \cos 2 \pi(80) t \\
& c(t)=4 \cos 2 \pi(1000) t
\end{aligned}
$$

$$
\begin{aligned}
& c(t)=4 \cos 2 \pi(1000) t \\
& \alpha \cdot\left\langle m(t)^{2}\right\rangle=\frac{(2)^{2}}{2}+\frac{(4)^{2}}{2} ; \text { terms are orthogonal } \\
& \alpha+\alpha=10 \mathrm{~W}
\end{aligned}
$$

$$
=2^{2}+8^{2}=10 \mathrm{~W}
$$

b.

$$
\begin{aligned}
& s(t)=A_{c} m(t) \cos 2 \pi f_{c} t \\
& s(t)=5[2 \cos 2 \pi(40) t+4 \cos 2 \pi(80) t] \cos 2 \pi(1000) t
\end{aligned}
$$

$$
k \cdot W=2 W
$$

$$
=2(80)
$$

$$
=160 \mathrm{HZ}
$$

$$
C . \quad \stackrel{S t)}{\text { Low pass filter }} \begin{aligned}
& \text { with } \\
& \text { wis }
\end{aligned}
$$

$A_{c}^{\prime} \cos 2 \pi f_{c} t$

$$
A_{c}^{\prime} \cos 2 \pi(1000) t
$$

Analysis: $\quad V(t)=A_{c}^{\prime} \cos 2 \pi f_{c} t \quad S(t)$

$$
\begin{aligned}
t & =A_{c}^{\prime} \cos 2 \pi f_{c} t S(t) \\
& =A_{c} A_{c}^{\prime} \cos 2 \pi f_{c} t \cos 2 \pi f_{c} t m(t) \\
& =\frac{A_{c} A_{c}^{\prime}}{2} m(t) \cos ^{2} 2 \pi f_{c} t \\
& =\frac{A_{c} A_{c}^{\prime}}{2} m(t)\left[1+\cos 4 \pi f_{c} t\right]
\end{aligned}
$$

$$
\Rightarrow \quad y(t)=\frac{A_{c} A_{c}^{\prime}}{2} m(t)
$$

Problem 3

$$
\begin{aligned}
& s(t)=A_{c} \cos 2 \pi f_{c} 1\left(1+k_{\alpha} m(t)\right) ; \\
& s(t)=A_{c}[1+0.2 \times 0.3 \cos 2 \pi(500) t] \cos 2 \pi f t \\
& k_{c}=0.21
\end{aligned}
$$

$$
a \cdot M \cdot I \cdot=0.6
$$

$$
b \cdot s(t)=10 \cos 2 \pi f_{c} t+6 \cos 2 \pi f_{c} t \cos 2 \pi f_{m} t
$$

$$
\begin{aligned}
& s(t)=10 \cos 2 \pi f_{c} t+6 \cos 2 \cos 2 \pi\left(f_{c}-500\right) t \\
& s(t)=10 \cos 2 \pi f_{t} t+3 \cos 2 \pi\left(f_{c}+500\right) t+3 \cos \\
& \text { sidatonds }
\end{aligned}
$$

sidebouds
cawier

$$
P_{a v}(\text { camier })=\frac{A_{c}^{2}}{2}=\frac{10^{2}}{2}=50
$$

$$
\begin{aligned}
& P_{\text {av }}(\text { camier })=\frac{A_{c}^{2}}{2}=\frac{10}{2}=50 \\
& P_{\text {ar }}(2 \text { Gidebands })=\left(\frac{3^{2}}{2}\right) \times 2=9 \text {; each with } 4.5 \text { watt } \\
& \text { power in sidband/ }
\end{aligned}
$$

$$
=\frac{9+5}{50+9}=\frac{9}{59}
$$

$$
=0.152
$$

$$
\begin{aligned}
&=0.152 \\
& \text { Also, power efficioncy }=\frac{\mu^{2}}{2+\mu^{2}}=\frac{(0.36)^{2}}{2+(0.56)^{2}} \\
&=0.152 ;\left(\begin{array}{c}
\text { formuaderived in } \\
\text { (lass })
\end{array}\right.
\end{aligned}
$$

d. $\begin{aligned} \forall(t) & =A_{c}\left[1+\mu \cos \omega_{m} t\right] \cos \omega_{c} t \cdot \cos \omega_{c} t \\ & =\frac{A_{c}\left[1+\mu \cos \omega_{m} t\right]}{2}\left[1+\cos 2 \omega_{c} t\right]\end{aligned}$

$$
\Rightarrow y(t)=\frac{A_{c}\left[1+\mu \cos \omega_{m} t\right]}{2}
$$

problem 4 :

$$
\begin{aligned}
& \therefore s(t)=10 \cos (2 \pi(10000) t+1,2 \sin 2 \pi(200) t) \\
& , \sin 2 \pi(200) t)
\end{aligned}
$$

a.

$$
\begin{aligned}
& s(t)=10 \cos (2 \pi(10000) t T \\
& f_{i}(t)=\frac{1}{2 \pi} \frac{d}{d t}(2 \pi(10000) t t 1.2 \sin 2 \pi(200) t) .
\end{aligned}
$$

$$
\begin{aligned}
t & =\frac{1}{2 \pi} \frac{d}{d t}(2 \pi(10000) \pi \\
& =f_{c}+\frac{1}{2 \pi} \times 1.2(2 \pi(200)) \cos 2 \pi(200) t
\end{aligned}
$$

$$
=f_{c} 2 \pi \quad 240 \cos 2 \pi(200) t
$$

Cl)
b. peak frequany deviation $=240$ from (\$)

Also,

$$
\begin{aligned}
\beta=\frac{\Delta f}{f m} \Rightarrow \Delta f_{0} & =\beta f_{m}=(1.2)(200) \\
& =240 \mathrm{~Hz}
\end{aligned}
$$

$$
=240 \mathrm{~Hz}
$$

$$
c \cdot S(t)=(10) S_{0}(1.2) \cos 2 \pi f_{c} t
$$

$$
\begin{aligned}
& +(10) S_{1}(1.2) \cos 2 \pi\left(f_{c}+3 m\right. \\
& +(10) \sum_{1}(1.2) \cos 2 \pi\left(f_{c}-f_{m}\right) t=0.153 \\
& +\left(\cos 2 \pi\left(f_{c}+2 f_{m}\right) t=0.15\right.
\end{aligned}
$$

$$
\begin{aligned}
& +(10) J_{1}(1.2) \cos 2 \pi\left(f_{c}\right) \cos 2 \pi\left(f_{c}+2 f_{m}\right) t=0.1593 \\
& +(10) \mathrm{S}_{-1}(1.2) \cos =0.1593 \\
& +(10) \mathrm{S}_{2}(1.2) \cos 2 \pi\left(f_{c}-2 f_{\mathrm{m}}\right) t=
\end{aligned}
$$

$$
\begin{aligned}
& +(10) \sum_{1} \\
& +(10) S_{2}(1.2) \cos 2 \pi\left(f_{c}+2 f_{m}\right) t \\
& +(10) \sum_{-2}(1.2) \cos 2 \pi\left(f_{c}-2 f_{m}\right) r=0.1593 \\
&
\end{aligned}
$$

$$
\begin{aligned}
& \text { Total average power }=\frac{(10)^{2}}{2}=50 \\
& f_{c}+2 f
\end{aligned}
$$

$$
\begin{aligned}
& \frac{(6.711)^{2}}{2} \\
& \frac{4.983)^{2}}{2} \\
& \frac{1.83}{2}
\end{aligned}
$$

$$
22.5
$$

$$
24.83
$$

94.6% not enough

$$
\begin{aligned}
& 2.537 \\
& \Rightarrow B \cdot W=2 \times(2 f \mathrm{~m}) \\
&=4 f \mathrm{~m} \\
&=4(200) \\
&=800 \mathrm{~Hz}
\end{aligned}
$$

